Link layer protocol performance of indoor infrared wireless communications
نویسنده
چکیده
The increasing deployment of portable computers and mobile devices leads to an increasing demand for wireless connections. Infrared presents several advantages over radio for indoor wireless connectivity but infrared link quality is affected by ambient infrared noise and by low power transmission levels due to eye safety limitations. The Infrared Data Association (IrDA) has developed the widely used IrDA 1.x protocol standard for short range, narrow beam, point to point connections. IrDA addressed the requirement for indoor multipoint connectivity with the development of the Advanced Infrared (AIr) protocol stack. This work analyses infrared link layer design based on IrDA proposals for addressing link layer topics and suggests implementation issues and protocol modifications that improve the operation of short range infrared connections. The performance of optical wireless links is measured by the utilization, which can be drawn at the data link layer. A new mathematical model is developed that reaches a simple equation that calculates IrDA 1.x utilization. The model is validated by comparing its outcome with simulation results obtained using the OPNET modeler. The mathematical model is employed to study the effectiveness on utilization of physical and link layer parameters. The simple equation gives insights for the optimum control of the infrared link for maximum utilization. By differentiating the utilization equation, simple formulas are derived for optimum values of the window and frame size parameters. Analytical results indicate that significant utilization increase is observed if the optimum values are implemented, especially for high error rate links. A protocol improvement that utilizes special Supervisory frames (S-frames) to pass transmission control is proposed to deal with delays introduced by F-timer expiration. Results indicate that employing the special S-frame highly improves utilization when optimum window and frame size values are implemented. The achieved practical utilization increase for optimum parameter implementation is confirmed by means of simulation. AIr protocol trades speed for range by employing Repetition Rate (RR) coding to achieve the increased transmission range required for wireless LAN connectivity. AIr employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A mathematical model is developed for the AIr collision avoidance (CA) procedures and validated by comparing analysis with simulation results. The model is employed to examine the effectiveness of the CA parameters on utilization. By differentiating the utilization equation, the optimum CW size that maximises utilization as a function of the number of the transmitting stations is derived. The proposed linear CW adjustment is very effective in implementing CW values close to optimum and thus minimizing CA delays. AIr implements a Go-Back-N retransmission scheme at high or low level to cope with transmission errors. AIr optionally implements a Stop-and-Wait retransmission scheme to efficiently implement RR coding. Analytical models for the AIr retransmission schemes are developed and employed to compare protocol utilization for different link parameter values. Finally, the effectiveness of the proposed RR coding on utilization for different retransmission schemes is explored.
منابع مشابه
Performance modelling of the IrDA infrared wireless communications protocol
We present a performance analysis of the Infrared Data Association (IrDA) IR data communications protocol using a mathematical throughput model based on the virtual transmission time of uni-directional IrDA data packets. The IrDA standard speci"es a protocol stack for reliable short-range indoor IR wireless data communication between devices with the data link layer (IrLAP) being a HDLC derivat...
متن کاملOptimization of IrDA IrLAP link access protocol
The widespread installation of millions of Infrared Data Association (IrDA) infrared (IR) ports in mobile devices for wireless communication applications necessitates for throughput performance optimization of the IR links at the IrDA link access protocol (IrLAP) link layer. For IrDA connectivity, link-layer throughput optimization is important for any line bit-error rate (BER). The paper provi...
متن کاملMulti-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملMulti-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملPerformance Analysis of AIr-MAC Optical Wireless Protocol
A simulation model for the proposed IrDA Advaned Infrared (AIR) protocol is developed. Throughpt performance of AIr's Reserved mode, which employes an RTS/CTS reservation scheme, is explored. The importance of the CAS window size parameter for different network sizes is presented in relation to the large Slot Time value proposed by the AIr standard. The effectiveness of the proposed adaptive Co...
متن کامل